

Operations Status and AIRS Trends

Denis Elliott

November 16, 2012

Copyright 2012
California Institute of Technology
Government sponsorship acknowledged

Operations status and AIRS trends AIRS Science Team Meeting November 13–16 2012 Greenbelt MD

AIRS Operations Status

AIRS Operational Status

- AIRS is in excellent health
- All engineering parameter plots versus time are either flat or changing extremely slowly—no concerns
- Some channels have degraded noise performance due to radiation dosage
 - Many of the degraded channels had their noise performance significantly improved last January by revising the on-board gain table

AIRS Chopper Drive Current

AIRS Scan Mirror Temperature

Copyright 2012
California Institute of Technology
Government sponsorship acknowledged

Operations status and AIRS trends AIRS Science Team Meeting November 13–16 2012 Greenbelt MD

AIRS Scan Mirror Temperature Anomaly Trend

 The scan mirror temperature anomaly is the difference between the measured temperature and a fit that follows seasonal variations

AIRS Choke Point Heater Current

Copyright 2012
California Institute of Technology
Government sponsorship acknowledged

Operations status and AIRS trends AIRS Science Team Meeting November 13–16 2012 Greenbelt MD

Government sponsorship acknowledged

AIRS Cooler A Drive Level

November 13-16 2012 Greenbelt MD

AIRS Cooler B Drive Level

AIRS Focal Plane Temperature

Effect of January gain table change

AMSU-A Status

AMSU-A Operational Status

- AMSU-A mechanical parts and most of the electronics are in good health
- All engineering parameter trends are slow
- The A1-1 and A1-2 scanner currents are rising, but very slowly and are not alarming
- 10 of the 15 channels are healthy, but
 - Channel 4 failed in 2007 (declared non-operational on October 1 2007)
 - Channel 5 is now too noisy to contribute to Level 2
 - Channel 7 noise has exceeded specs since launch and has never been used for L2
 - Channel 6 has been degrading slowly since 2008, but is still a good channel—its NEΔT may actually be oscillatory (see later chart)
 - Channel 1 began degrading in January 2012, but is still a good channel

AMSU-A1-1 RF Shelf Temperature

14

AMSU-A2 RF Shelf Temperature

AMSU-A1-2 Noisy Bus Current

16

AMSU-A Channel 5 ΝΕΔΤ

AMSU-A Channel 6 ΝΕΔΤ

18

AMSU-A Channel 1 ΝΕΔΤ

19

Aqua Status And Anomalies

Copyright 2012
California Institute of Technology
Government sponsorship acknowledged

Operations status and AIRS trends AIRS Science Team Meeting November 13–16 2012 Greenbelt MD

Aqua Spacecraft Health Status

Aqua is in very good health

Several anomalies have occurred over the years

All are considered minor

None have yet impacted operations

Aqua Fuel Supply

Occasional drag make up burns use only a very small amount of fuel

- Most fuel usage takes place in orbital inclination adjustment maneuvers, needed to keep Aqua properly aligned with other A-train instruments and to tightly control our 1:30 pm crossing time
 - Three or four such maneuvers are planned every year, near the vernal equinox
 - A recent estimate of future fuel usage indicates that the hydrazine should last at least until 2020, and possibly longer

Projected Aqua Fuel Usage

AMSR-E Spin-up Plans

AMSR-E Anomaly Background

- Suffered numerous anomalies (excess commanded torque and excess current in scanner) over the past several years
- On October 4 2011, in response to the largest of these anomalies yet seen, the instrument was commanded to slow from 40 rpm to 4 rpm
- When problems continued even at 4 rpm the antenna was parked
- Lubricant failure is probable cause
- Spacecraft jitter was seen in AIRS geolocation data during the spin down, but there was no noticeable impact to science on AIRS or any of the other instruments

AMSR-E Spin-Up

- Not yet declared dead
- AMSR-E team requested a spin-up to 4 rpm to enable crosscalibration with a new instrument, AMSR2, which was launched on GCOM-W1 on May 18 2012
- On September 19 and 20 six attempts were made to spin AMSR-E up to 4 RPM—all failed to reach their goal, but the antenna did complete over 2 revolutions
- Planning for a spin-up to 2 RPM on December 4 is in progress
- JAXA wants AMSR-E to stay at 2 RPM at least two months

AIRS Trends

Trends Introduction

- We are now able to examine AIRS trends over a full 10-year period
 - obs calc over oceans
 - brightness temperature comparisons at specific sites
 - AIRS and the automated weather station at Dome C
 - Trends in the AIRS spectral frequency shifts
- We are also able to compare AIRS and IASI over a 5-year period
- For this talk I will just show the AIRS Dome C and spectral frequency trends—the other topics have been or will be covered by others at this meeting

Dome C weather station AWS8989

AIRS vs Dome C weather station

AIRS long-term and seasonal spectral shifts (from Aumann)

Spectral shifts using channels on slopes of a line (from Aumann)

- Shifts determined using the difference between channels #448 and #450
 - They straddle the CO₂ Q-branch at 791.7 cm⁻¹
- A shift of plus one micron in the focal plane (1% of the SRF width) makes #448 warmer by 0.161K, while it makes #450 colder by 0.122K under tropical ocean clear conditions
- This difference is shown on the previous slide
 - between 2002 and 2009 the difference steadily decreased at the rate of -0.028K/yr, corresponding to a focal plane shift of -0.1μm/yr
 - starting in 2009 the shift reversed to +0.03μm/yr
 - superimposed on this long-term trend is a seasonal peak-to-peak modulation of 0.05K (that is 0.2 μm [0.2% of the SRF]) and an orbital oscillation

Backup

Copyright 2012
California Institute of Technology
Government sponsorship acknowledged

Operations status and AIRS trends AIRS Science Team Meeting November 13–16 2012 Greenbelt MD

IASI Data Incompleteness Revisited

- The above chart is from the reference
- Note the sharp drop off of IASI spectra counts starting at 240 K
- Above 250 K no IASI spectra appear at all, although AIRS does see some scenes as warm as 255 K

IASI Data Incompleteness—Additional Detail (1 of 2)

- Note that the AIRS versus IASI difference is small at very low temperatures and also at the higher temperatures seen at Surgut
- Note also that for Surgut the difference is near zero all the way down to 230 K (the lowest temperatures seen at Surgut)
- But for temperatures above 215 K at Dome C the difference is as high as 5 K
 - Apparently, some IASI Dome C spectra are influenced by the interference problem even when they pass the on-board quality check. The observed brightness temperatures are affected.

IASI Data Incompleteness—Additional Detail (2 of 2)

- Here, before calculating daily means, we have eliminated all spectra with a brightness temperature in the range 240–260 K
- Of course the noise is increased in and around that range
- Note that the AIRS IASI difference for Dome C in the range 230 to 240 has
 noticeably decreased and the distribution has tightened—further evidence that
 IASI spectra at Dome C are affected by the interference problem even when they
 pass quality control, at scene temperatures as low as 215 K